

OVERVIEW OF OPTICAL LITHOGRAPHY AT LETI: CAPABILITIES AND ACHIEVEMENTS

Leti litho workshop | ALLOUTI Nacima | 6 July 2018

• Overview of CEA-LETI 300mm Optical lithography capabilities

• 300mm Optical lithography alternative capabilities & achievements

Conclusion

Overview of CEA-LETI 300mm Optical lithography capabilities

• Progress in lithography has been the result of many advances

- Better lenses, resists, chemical-mechanical polishing, resists, chemical-mechanical polishing (CMP) etc.

• The largest impacts have been made by changes in wavelength

g-line
$$\rightarrow$$
 i-line \rightarrow KrF \rightarrow ArF \rightarrow F₂

436 nm \rightarrow 365 nm \rightarrow 248 nm \rightarrow 193 nm \rightarrow 157 nm

leti œatech

OPTICAL LITHOGRAPHY RESOLUTION

Finer resolution can be achieved by:

- Shorter wavelength (436 nm...
 365 nm ...248 nm...193 nm...13.5 nm)
- Reduced process factor : k
 - Improved masks (CD control, Phase Shift masks)
 - Improved lenses (aberrations)
 - Better photoresists
 - Better process controls
 - Resolution Enhancement Techniques (RET)
- Increased numerical aperture
 Immersion with NA>1

³ – Alternative patterning process integrations:

- Double patterning /Etch trimming / DSA etc.
- Lithography Tool technology Mix and match

Lord Rayleigh (John Strutt)

OPTICAL 300MM @ LETI

Size

1X Mask Aligner 365nm

TAKATORI Dry film Vaccum laminator

Suss ACS300 Track

3D Stepper 365nm

Cluster CANON FPA-5510iZ + TEL LITHIUS Track

Scanner 193nm

Immersion 193nm

Leti CERTECT Optical Lithography resolution : Ways to reduce k₁

Leti Optical Lithography resolution : reducing k₁ by mask data prep

Leti dedicated Data-Prep Team

ceatech

Advanced OPC, ILT, mask analysis

Source Mask co-Optimization

Hotspots failure prediction / analysis

leti

OPTICAL 300MM LITHOGRAPHY RESOLUTION MATERIAL BENCHMARKING & LWR IMPROVEMENT

Two method used for LWR:

- 1. Mean LWR measured on MEB CD KLA CG4000
- 2. Power Spectral Density method with roughness spectral measurement

LWR

 Line Width 	Roughness
--------------------------------	-----------

Line Edge Roughness

N*>200 L=2154nm; ∆y=5.4nm

SOC + <u>SiArc</u>		motif	POST					POST ETCH				
	Resist		CD mean	LER (nm)	LWR (nm)	3σ (nm)		CD mean	LER (nm)	LWR (nm)	3σ (nm)	
JSR HM8102 + ISX412	4.016021	isolé	80	5,7	7,9	2		34	6	5	2	
	AR1682J	dense	75	8,4	9	2		29	7	5,5	2	
JSR HM8102 + ISX412		isolé	85	5,4	7,3	2,6		35	6	4	3	
	Alwi9541N	dense	75	7,6	8,1	2,3		23	6	4,8	2,9	
JSR HM8102 + ShinEtsu SOC	AIM9541N	isolé		6,7	9,5	6,3			10	5,5	3,2	
		dense		9,8	11,1	4,5			10	9,3	4	
Brewer	AIM9541N	isolé	86	4,5	6,1	2,5		36	6	3,7	3	
HM825		dense	77	7,5	7,6	3		25	6,8	4,2	2,8	

193NM LITHOGRAPHY TRILAYER BENCHMARKING

LetiOPTICAL 300MM LITHOGRAPHY RESOLUTIONMATERIAL CHARACTERISATION PLATFORM

More than 100 m² dedicated to characterization

 Introducing new lithographic technologies will be hard and expensive

 The End of optical lithography is finally approaching... But not immediately!

 Alternatives lithography integrations may enable the semiconductor industry to continue to produce higher performance device for cheaper cost ?

300 optical lithography alternative capabilities & achievements

OPTICAL LITHOGRAPHY KEY ACTIVITY

- CMOS
 - Focus on FDSOI for sub 28nm TN
 - Si nanowire for 10 nm TN (nano sheet T.ernst)
 - 3D stacked devices
- 3D Integration
 - Si interposer
 - High density TSV, TSV Mid/Last etc..

Memories

- Embedded non volatile memories
- Focus on resistive memories (PCM, CBRAM, OXRAM and MRAM) for speed, consumption, reliability
- Silicon Photonic
 - Optical waveguide
 - Far Back End Optics
- Microsystems and Advanced components
 - MEMS, NEMS, actuator, RF components, Power devices

B.Szellag: Photonic guide

P.Batude: TEM cross section of 3DSI with 200nm contact and 3D contact pitch

A.Berthelot: M&NEMS 300mm acceleromete

Leti litho workshop | ALLOUTI Nacima | 6 July 2018 | 13

SPECIFIC 3D LITHOGRAPHY ACTIVITIES

Leti litho workshop | ALLOUTI Nacima | 6 July 2018 | 14

leti

LETI CMOS IMAGE SENSOR OFFER OVERVIEW

1 CERT CALL OF THE AND ADDRESS AND ADDRESS AD

Leti litho workshop | ALLOUTI Nacima | 6 July 2018 | 16

Conclusions

LETI OPTICAL LITHOGRAPHY CAPABILITIES AND FUTURE

 Leti offer a large equipment capability, starting from 1X mask aligner to Arf scanner immersion

- Leti team expertise & strength to propose advanced patterning solutions
 - Data preparation
 - Material characterization
 - Innovation material evaluation
 - Close link with etch team

- Leti position focus
 - IS NOT on the main stream of advanced lithography
 - BUT on the development of industrial alternative patterning and disruptive solutions

Thanks for your attention

leti

PASSIVATION RESIST BENCHMARKING

- More than 15 resist evaluated following a specific characterization protocol
- Five materials emerged, including our reference (a fluoropolymer), covering a wide range of chemistry

	Ref	2015					2016								2017			
Properties	AL-X2010 (AGC)	WPR1021 (JSR)	PN0324D (TOK)	SiNR3170 (SE)	SiX81 (SE)	HD8930 (HD)	HD8940 (HD)	HD4104 (HD)	LTC-9305 (FFEM)	FB5610 (FFEM)	WPR-S395P (JSR)	HD8820 (HD)	ZC100-T (Zeon)	BL-301 (Asahi Kasei)	BL-401 (AsahiKasei)	WL-5510 (DowCorning)		
Tone	Negative	Negative	Positive	Negative	Negative	Positive	Positive	Positive	Negative	Negative	Positive	Positive	Positive	Negative	Negative	Negative		
Polymer type	Epoxy fluore	Phenol	Phenol	Siloxane	Siloxane	PBO	PBO	PI	PI	PI	Phenol	PBO	cyclic olefin polymer	PI	PI	Siloxane		
Developer	PGMEA	TMAH	ТМАН	IPA	TMAH	TMAH	TMAH	Cyclopentan one + PGMEA	Cyclopentanone + PGMEA	Cyclopenta none + PGMEA	ТМАН	TMAH	PGMEA	Cyclopentano ne + PGMEA	Cyclopentano ne + PGMEA	IPA		
Cure	190°C	200°C	180°C	180°C	180°C	200°C	200°C	375°C	200°C	350°C	200°C	320°C	190°C	200°C	200°C	250°C		
Dielectric constant	2.65	3,5	3,5	2,6	3,1	3,1	3,1	3,4	3.25	2,98	3,5	2,94	2.9	3.3	3.3	3,2		
CTE (ppm/°C)	60	54	49	180	217	60	60	35	38	50	65	55	51	65	65	236		
Tg	230°C	210°C	190°C	<50°C	242°C	230°C	230	330	235°C	310	>250°C	270°C	200°C	200°C	200°C	<50°C		
1% weight loss in air	354*C					250°C (5%)	250°C (5%)	430	255°C	470 (5%)	200%	400°C	290°C					
Elongation	20%	7%				100%	100%	45%	40%	4800%		25%	8%	50%	50%			
Tensile strength	90MPa	94MPa				170MPa	170Mpa	200	139MPa	120		114MPa	100MPa	130MPa	130MPa			
Young's Modulus	2,2GPa	2,5GPa	2,2GPa	0,09GPa	0,44Gpa	2.2GPa	2.2	3.3	3GPa	2.8	1,8GPa	2GPa	2.9GPa	3.5GPa	3.5GPa	0,16Gpa		
Residual Stress	32					25	25	34		36			23	19	19			
Moisture uptake	0.2%	<10%	20%	<1%	6%	<9%	<9%	9,50%	<5%	<5%	15%	<3%	<2%	tbd	tbd	0.2%		
ESH Compliant	Yes	Yes	Yes	Yes	Yes	No	NMP <0.3%,	No	Yes but drains compatibility?	Yes	Yes	No	Yes	No	Yes but drains compatibility?	Yes		
Performance		Cu compatible	TMAH developable	TMAH developable	Low stress	TMAH developable	TMAH developable	Used in mass production in Osat's	NMP Free	TMAH developabl e	TMAH developable	Used in mass production in Osat's	Cu compatible	Used in mass production in Osat's	NMP Free	Low stress, chemical resistance		
Drawbacks	Expensive, Production stop in 2018	Low chemical resistance moisture senstitive	Bad adhesion moisture senstitive	Stress behavior after aging ?	Low chemical resistance	NMP presence	Stress behavior at chip level	NMP presence	Solvent developable	low chemical resistance	Low chemical resistance moisture	NMP presence	Stress behavior at chip level	NMP presence	Solvent developable	Solvent developable		

Moisture environment test resistance

Normalized FTIR spectra focus on 3000 to 3800 cm $^{-1}$ band to estimate water uptake of polymers after an exposition to uHAST

Polymers A, F have absorbed no water
Whereas the other polymers are more moisture-sensitive and seem less resistant against humidity environment

Stress measurement on 300mm wafers

Stress measurement on thinned chip

Electrical test vehicle

uHAST reliability test results

MOLDING Context & challenges

- Benchmarking of innovative molding& underfilling material through Leti-suppliers join development
- 1rst main objective will be to challenge these materials through test vehicle in to assess Stress properties and Handling and compatibility for clean room process